05-HTTP安全

0.1. HTTPS与SSL/TLS

HTTP 的一些缺点,其中的“无状态”在加入 Cookie 后得到了解决,而另两个缺点——“明文”和“不安全”仅凭 HTTP 自身是无力解决的,需要引入新的 HTTPS 协议。

由于 HTTP 天生“明文”的特点,整个传输过程完全透明,任何人都能够在链路中截获、修改或者伪造请求/响应报文,数据不具有可信性。

比如“代理服务”作为 HTTP 通信的中间人,在数据上下行的时候可以添加或删除部分头字段,也可以使用黑白名单过滤 body 里的关键字,甚至直接发送虚假的请求、响应,而浏览器和源服务器都没有办法判断报文的真伪。

如果通信过程具备了四个特性,就可以认为是“安全”的,这四个特性是:机密性、完整性,身份认证和不可否认。

  • 机密性(Secrecy/Confidentiality)是指对数据的“保密”,只能由可信的人访问,对其他人是不可见的“秘密”。
  • 完整性(Integrity,也叫一致性)是指数据在传输过程中没有被篡改,“完完整整”地保持着原状。
  • 身份认证(Authentication)是指确认对方的真实身份,保证消息只能发送给可信的人。
  • 不可否认(Non-repudiation/Undeniable)是不能否认已经发生过的行为。

0.1.1. HTTPS

HTTPS 其实是一个“非常简单”的协议,RFC 文档很小,只有短短的 7 页,里面规定了新的协议名“https”,默认端口号 443,其他的像请求——应答模式、报文结构、请求方法、URI、头字段、连接管理等等都完全沿用 HTTP,没有任何新的东西。除了协议名“http”和端口号 80 这两点不同,HTTPS 协议在语法、语义上和 HTTP 完全一样,优缺点也“照单全收”(当然要除去“明文”和“不安全”)。

HTTPS 与 HTTP 最大的区别,它能够鉴别危险的网站,并且尽最大可能保证上网安全,防御黑客对信息的窃听、篡改或者“钓鱼”、伪造。

HTTPS 做到机密性、完整性的原理就在于,把 HTTP 下层的传输协议由 TCP/IP 换成了 SSL/TLS,由“HTTP over TCP/IP”变成了“HTTP over SSL/TLS”,让 HTTP 运行在了安全的 SSL/TLS 协议上,收发报文不再使用 Socket API,而是调用专门的安全接口。

https

HTTPS 本身并没有什么本事,全是靠着后面的 SSL/TLS“撑腰”。

0.1.2. SSL/TLS

SSL 即安全套接层(Secure Sockets Layer),在 OSI 模型中处于第 5 层(会话层)。

年份协议版本
1994SSLV3/v2
1999SSLV3.1 => TLS1.0
2006TLS1.1
2008TLS1.2
2018TLS1.3

每个新版本都紧跟密码学的发展和互联网的现状,持续强化安全和性能,已经成为了信息安全领域中的权威标准。

目前应用的最广泛的 TLS(传输层安全,Transport Layer Security) 是 1.2,而之前的协议(TLS1.1/1.0SSLv3/v2)都已经被认为是不安全的,各大浏览器在 2020 年左右停止支持。

TLS 由记录协议、握手协议、警告协议、变更密码规范协议、扩展协议等几个子协议组成,综合使用了对称加密、非对称加密、身份认证等许多密码学前沿技术。

浏览器和服务器在使用 TLS 建立连接时需要选择一组恰当的加密算法来实现安全通信,这些算法的组合被称为“密码套件”(cipher suite,也叫加密套件)。TLS 的密码套件命名非常规范,格式很固定。基本的形式是“密钥交换算法 + 签名算法 + 对称加密算法 + 摘要算法”。

比如“ECDHE-RSA-AES256-GCM-SHA384”密码套件的意思就是:握手时使用 ECDHE 算法进行密钥交换,用 RSA 签名和身份认证,握手后的通信使用 AES 对称算法,密钥长度 256 位,分组模式是 GCM,摘要算法 SHA384 用于消息认证和产生随机数。”

在OpenSSL里的密码套件定义与TLS略有不同,TLS里的形式是“TLS_ECDHE_RSA_WITH_AES256_GCM_SHA384”,增加前缀并用WITH分开了握手和通信的算法。

除了HTTP,SSL/TLS也可以承载其他的应用协议,例如FTP=>FTPS,LDAP=>LDAPS等。

0.1.3. OpenSSL

说到 TLS,就不能不谈到 OpenSSL,它是一个著名的开源密码学程序库和工具包,几乎支持所有公开的加密算法和协议,已经成为了事实上的标准,许多应用软件都会使用它作为底层库来实现 TLS 功能,包括常用的 Web 服务器 Apache、Nginx 等。

OpenSSL 是从另一个开源库 SSLeay 发展出来的,曾经考虑命名为“OpenTLS”,但当时(1998 年)TLS 还未正式确立,而 SSL 早已广为人知,所以最终使用了“OpenSSL”的名字。OpenSSL注明的“心脏出血”(Heart Bleed)漏洞,出现在1.0.1版本。

OpenSSL 目前有三个主要的分支,1.0.21.1.0 都在2019年底不再维护,最新的长期支持版本是 1.1.1

由于 OpenSSL 是开源的,所以它还有一些代码分支,比如 Google 的 BoringSSL、OpenBSD 的 LibreSSL,这些分支在 OpenSSL 的基础上删除了一些老旧代码,也增加了一些新特性,虽然背后有“大金主”,但离取代 OpenSSL 还差得很远。

Mozilla开发了另一个著名的开源密码库NSS(Network Security Services)。

0.2. 非/对称加密

实现机密性最常用的手段是“加密”(encrypt),把消息用某种方式转换成乱码,只有掌握特殊“钥匙”的人才能再转换出原始文本。

这里的“钥匙”就叫做“密钥”(key),加密前的消息叫“明文”(plain text/clear text),加密后的乱码叫“密文”(cipher text),使用密钥还原明文的过程叫“解密”(decrypt),是加密的反操作,加密解密的操作过程就是“加密算法”。

所有的加密算法都是公开的,任何人都可以去分析研究,而算法使用的“密钥”则必须保密

由于 HTTPS、TLS 都运行在计算机上,所以“密钥”就是一长串的数字,但约定俗成的度量单位是“位”(bit),而不是“字节”(byte)。比如:

  • 密钥长度是 128,就是 16 字节的二进制串,
  • 密钥长度 1024,就是 128 字节的二进制串。

按照密钥的使用方式,加密可以分为两大类:对称加密和非对称加密。

0.2.1. 对称加密

“对称加密”就是指加密和解密时使用密钥都是同一个,是“对称”的。只要保证了密钥的安全,那整个通信过程就可以说具有了机密性。

Symmetric encryption

TLS 里有非常多的对称加密算法,比如 RC4、DES、3DES、AES、ChaCha20 等,但前三种算法都被认为是不安全的,通常都禁止使用,目前常用的只有 AESChaCha20

  • AES 的意思是“高级加密标准”(Advanced Encryption Standard),密钥长度可以是 128、192 或 256。它是 DES 算法的替代者,安全强度很高,性能也很好,而且有的硬件还会做特殊优化,所以非常流行,是应用最广泛的对称加密算法。
  • ChaCha20 是 Google 设计的加密算法,密钥长度固定为 256 位,纯软件运行性能要超过 AES,曾经在移动客户端上比较流行,但 ARMv8 之后也加入了 AES 硬件优化,所以现在不再具有明显的优势。

0.2.2. 加密分组模式

对称算法还有一个“分组模式”的概念,它可以让算法用固定长度的密钥加密任意长度的明文。

最早有 ECB、CBC、CFB、OFB 等几种分组模式,但都陆续被发现有安全漏洞,所以现在基本都不用了。

最新的分组模式被称为 AEAD(Authenticated Encryption with Associated Data),在加密的同时增加了认证的功能,常用的是 GCM、CCM 和 Poly1305。

把这些组合起来,就可以得到 TLS 密码套件中定义的对称加密算法。比如:

  • AES128-GCM,意思是密钥长度为 128 位的 AES 算法,使用的分组模式是 GCM;
  • ChaCha20-Poly1305,意思是 ChaCha20 算法,使用的分组模式是 Poly1305。

0.2.3. 非对称加密

对称加密有一个很大的问题:如何把密钥安全地传递给对方,术语叫“密钥交换”。因为在对称加密算法中只要持有密钥就可以解密。

如果密钥在传递途中被黑客窃取,那他就可以在之后随意解密收发的数据,通信过程也就没有机密性可言了。

只用对称加密算法,是绝对无法解决密钥交换的问题的。所以,就出现了非对称加密(也叫公钥加密算法)。

它有两个密钥,一个叫“公钥”(public key),一个叫“私钥”(private key)。两个密钥是不同的,“不对称”,公钥可以公开给任何人使用,而私钥必须严格保密。

公钥和私钥有个特别的“单向”性,虽然都可以用来加密解密,但公钥加密后只能用私钥解密,反过来,私钥加密后也只能用公钥解密。

非对称加密可以解决“密钥交换”的问题。网站秘密保管私钥,在网上任意分发公钥,你想要登录网站只要用公钥加密就行了,密文只能由私钥持有者才能解密。而黑客因为没有私钥,所以就无法破解密文。

Asymmetric-encryption

非对称加密算法的设计要比对称算法难得多,在 TLS 里只有很少的几种,比如 DH、DSA、RSA、ECC 等。

  • RSA 是其中最著名的,几乎可以说是非对称加密的代名词,它的安全性基于“整数分解”的数学难题,使用两个超大素数的乘积作为生成密钥的材料,想要从公钥推算出私钥是非常困难的。

10 年前 RSA 密钥的推荐长度是 1024,但随着计算机运算能力的提高,现在 1024 已经不安全,普遍认为至少要 2048 位。

  • ECC(Elliptic Curve Cryptography)是非对称加密里的“后起之秀”,它基于“椭圆曲线离散对数”的数学难题,使用特定的曲线方程和基点生成公钥和私钥,子算法 ECDHE 用于密钥交换,ECDSA 用于数字签名。

目前比较常用的两个曲线是 P-256(secp256r1,在 OpenSSL 称为 prime256v1)和 x25519。

P-256 是 NIST(美国国家标准技术研究所)和 NSA(美国国家安全局)推荐使用的曲线,而 x25519 被认为是最安全、最快速的曲线。

比起 RSA,ECC 在安全强度和性能上都有明显的优势。

  • 160 位的 ECC 相当于 1024 位的 RSA,
  • 224 位的 ECC 则相当于 2048 位的 RSA。

因为密钥短,所以相应的计算量、消耗的内存和带宽也就少,加密解密的性能就上去了,对于现在的移动互联网非常有吸引力。

0.2.4. 混合加密

虽然非对称加密没有“密钥交换”的问题,但因为它们都是基于复杂的数学难题,运算速度很慢,即使是 ECC 也要比 AES 差上好几个数量级。如果仅用非对称加密,虽然保证了安全,但通信速度有如乌龟、蜗牛,实用性就变成了零。

对比实验数据:

aes_128_cbc enc/dec 1000 times : 0.97ms, 13.11MB/s

rsa_1024 enc/dec 1000 times : 138.59ms, 93.80KB/s
rsa_1024/aes ratio = 143.17

rsa_2048 enc/dec 1000 times : 840.35ms, 15.47KB/s
rsa_2048/aes ratio = 868.13

RSA 的运算速度是非常慢的,2048 位的加解密大约是 15KB/S(微秒或毫秒级),而 AES128 则是 13MB/S(纳秒级),差了几百倍。

把对称加密和非对称加密结合起来,两者互相取长补短,即能高效地加密解密,又能安全地密钥交换。这就是现在 TLS 里使用的混合加密方式。

  1. 在通信刚开始的时候使用非对称算法,比如 RSA、ECDHE,解决密钥交换的问题。
  2. 然后用随机数产生对称算法使用的“会话密钥”(session key),再用公钥加密。因为会话密钥很短,通常只有 16 字节或 32 字节,所以慢一点也无所谓。
  3. 对方拿到密文后用私钥解密,取出会话密钥。这样,双方就实现了对称密钥的安全交换,后续就不再使用非对称加密,全都使用对称加密。

Hybrid encryption

这样混合加密就解决了对称加密算法的密钥交换问题,而且安全和性能兼顾,完美地实现了机密性。后面还有完整性、身份认证、不可否认等特性没有实现,所以现在的通信还不是绝对安全。

0.3. 数字签名与证书

在机密性的基础上必须加上完整性、身份认证等特性,才能实现真正的安全。

0.3.1. 摘要算法

实现完整性的手段主要是摘要算法(Digest Algorithm),也就是常说的散列函数、哈希函数(Hash Function)。

把摘要算法近似地理解成一种特殊的压缩算法,它能够把任意长度的数据“压缩”成固定长度、而且独一无二的“摘要”字符串,就好像是给这段数据生成了一个数字“指纹”。

可以把摘要算法理解成特殊的“单向”加密算法,它只有算法,没有密钥,加密后的数据无法解密,不能从摘要逆推出原文。

摘要算法实际上是把数据从一个“大空间”映射到了“小空间”,所以就存在“冲突”(collision,也叫碰撞)的可能性,就如同现实中的指纹一样,可能会有两份不同的原文对应相同的摘要。好的摘要算法必须能够“抵抗冲突”,让这种可能性尽量地小。

因为摘要算法对输入具有“单向性”和“雪崩效应”,输入的微小不同会导致输出的剧烈变化,所以也被 TLS 用来生成伪随机数(PRF,pseudo random function)。

MD5(Message-Digest 5)、SHA-1(Secure Hash Algorithm 1),是最常用的两个摘要算法,能够生成 16 字节和 20 字节长度的数字摘要。但这两个算法的安全强度比较低,不够安全,在 TLS 里已经被禁止使用了。

目前 TLS 推荐使用SHA-2,它是一系列摘要算法的统称,总共有 6 种,常用的有 SHA224、SHA256、SHA384,分别能够生成 28 字节、32 字节、48 字节的摘要。

0.3.2. 完整性

摘要算法保证了“数字摘要”和原文是完全等价的。所以,只要在原文后附上它的摘要,就能够保证数据的完整性。

不过摘要算法不具有机密性,如果明文传输,那么黑客可以修改消息后把摘要也一起改了,网站还是鉴别不出完整性。

所以,真正的完整性必须要建立在机密性之上,在混合加密系统里用会话密钥加密消息和摘要,这样黑客无法得知明文,也就没有办法动手脚了。这有个术语,叫哈希消息认证码(HMAC)。

hash

0.3.3. 数字签名

加密算法结合摘要算法的通信过程可以说是比较安全了。但这里还有漏洞,就是通信的两个端点(endpoint)。

黑客可以伪装成网站来窃取信息,可以伪装成用户,向网站发送支付、转账等消息。

在 TLS 的非对称加密里的“私钥”能够在数字世界里证明身份,使用私钥再加上摘要算法,就能够实现“数字签名”,同时实现“身份认证”和“不可否认”。

数字签名的原理,就是把公钥私钥的用法反过来,之前是公钥加密、私钥解密,现在是私钥加密、公钥解密。因为非对称加密效率太低,所以私钥只加密原文的摘要,这样运算量就小的多,而且得到的数字签名也很小,方便保管和传输。

签名和公钥一样完全公开,任何人都可以获取。但这个签名只有用私钥对应的公钥才能解开,拿到摘要后,再比对原文验证完整性。

digital signature

只要和网站互相交换公钥,就可以用“签名”和“验签”来确认消息的真实性,因为私钥保密,黑客不能伪造签名,就能够保证通信双方的身份。

比如,你用自己的私钥签名一个消息“我是小明”。网站收到后用你的公钥验签,确认身份没问题,于是也用它的私钥签名消息“我是某宝”。你收到后再用它的公钥验一下,也没问题,这样你和网站就都知道对方不是假冒的,后面就可以用混合加密进行安全通信了。

0.3.4. 数字证书和CA

综合使用对称加密、非对称加密和摘要算法,实现了安全的四大特性,还有一个“公钥的信任”问题。

因为谁都可以发布公钥,我们还缺少防止黑客伪造公钥的手段,也就是说,怎么来判断这个公钥就是你或者某宝的公钥呢?

可以用类似密钥交换的方法来解决公钥认证问题,用别的私钥来给公钥签名,显然,这又会陷入“无穷递归”。

找一个公认的可信第三方,让它作为“信任的起点,递归的终点”,构建起公钥的信任链。这个“第三方”就是我们常说的 CA(Certificate Authority,证书认证机构),由它来给各个公钥签名,用自身的信誉来保证公钥无法伪造,是可信的。

CA 对公钥的签名认证也是有格式的,把序列号、用途、颁发者、有效时间等打成一个包再签名,完整地证明公钥关联的各种信息,形成“数字证书”(Certificate)。

知名的 CA 全世界就那么几家,比如 DigiCert、VeriSign、Entrust、Let’s Encrypt(著名免费CA,只颁发DV证书) 等,它们签发的证书分 DV、OV、EV 三种,区别在于可信程度。

  • DV 是最低的,只是域名级别的可信,背后是谁不知道。
  • EV 是最高的,经过了法律和审计的严格核查,可以证明网站拥有者的身份(在浏览器地址栏会显示出公司的名字,例如 Apple、GitHub 的网站)。

证书的格式遵循X509 v3标准,有两种编码方式,一种是二进制的DER,另一种是ASCII码的PEM。

CA 怎么证明自己,又是信任链的问题。小 CA 可以让大 CA 签名认证,但链条的最后 Root CA,就只能自己证明自己,这个就叫“自签名证书”(Self-Signed Certificate)或者“根证书”(Root Certificate)。你必须相信,否则整个证书信任链就走不下去了。

有了证书体系,操作系统和浏览器都内置了各大 CA 的根证书,上网的时候只要服务器发过来它的证书,就可以验证证书里的签名,顺着证书链(Certificate Chain)一层层地验证,直到找到根证书,就能够确定证书是可信的,从而里面的公钥也是可信的。

0.3.5. 证书体系的弱点

证书体系(PKI,Public Key Infrastructure)虽然是目前整个网络世界的安全基础设施,但绝对的安全是不存在的,它也有弱点,还是关键的“信任”二字。

  1. 如果 CA 失误或者被欺骗,签发了错误的证书,虽然证书是真的,可它代表的网站却是假的。
  2. 还有一种更危险的情况,CA 被黑客攻陷,或者 CA 有恶意,因为它(即根证书)是信任的源头,整个信任链里的所有证书也就都不可信了。

所以,需要再给证书体系打上一些补丁。

  • 针对第一种,开发出了 CRL(证书吊销列表,Certificate revocation list)和 OCSP(在线证书状态协议,Online Certificate Status Protocol),及时废止有问题的证书。
  • 对于第二种,因为涉及的证书太多,就只能操作系统或者浏览器从根上“下狠手”了,撤销对 CA 的信任,列入“黑名单”,这样它颁发的所有证书就都会被认为是不安全的。

0.4. TLS1.2连接过程

0.4.1. HTTPS建立连接

  1. 浏览器首先要从 URI 里提取出协议名和域名。
  2. 因为协议名是“https”,所以浏览器就知道了端口号是默认的 443,
  3. 它再用 DNS 解析域名,得到目标的 IP 地址,然后就可以使用三次握手与网站建立 TCP 连接了。
  4. 在 HTTP 协议里,建立连接后,浏览器会立即发送请求报文。
  5. 在 HTTPS 协议里,需要另外一个“握手”过程,在 TCP 上建立安全连接,之后才是收发 HTTP 报文。这个“握手”过程与 TCP 有些类似,是 HTTPS 和 TLS 协议里最重要、最核心的部分。

0.4.2. TLS协议的组成

TLS 包含几个子协议,由几个不同职责的模块组成,比较常用的有记录协议、警报协议、握手协议、变更密码规范协议等。

  • 记录协议(Record Protocol)规定了 TLS 收发数据的基本单位:记录(record)。它有点像是 TCP 里的 segment,所有的其他子协议都需要通过记录协议发出。但多个记录数据可以在一个 TCP 包里一次性发出,也并不需要像 TCP 那样返回 ACK。
  • 警报协议(Alert Protocol)的职责是向对方发出警报信息,有点像是 HTTP 协议里的状态码。比如,protocol_version 就是不支持旧版本,bad_certificate 就是证书有问题,收到警报后另一方可以选择继续,也可以立即终止连接。
  • 握手协议(Handshake Protocol)是 TLS 里最复杂的子协议,要比 TCP 的 SYN/ACK 复杂的多,浏览器和服务器会在握手过程中协商 TLS 版本号、随机数、密码套件等信息,然后交换证书和密钥参数,最终双方协商得到会话密钥,用于后续的混合加密系统。
  • 变更密码规范协议(Change Cipher Spec Protocol),它非常简单,就是一个“通知”,告诉对方,后续的数据都将使用加密保护。在它之前,数据都是明文的。

下面的这张图简要地描述了 TLS 的握手过程,其中每一个“框”都是一个记录,多个记录组合成一个 TCP 包发送。所以,最多经过两次消息往返(4 个消息)就可以完成握手,然后就可以在安全的通信环境里发送 HTTP 报文,实现 HTTPS 协议。

https

0.4.3. ECDHE握手过程

ECDHE

在 TCP 建立连接之后,浏览器会首先发一个“Client Hello”消息,也就是跟服务器“打招呼”。里面有客户端的版本号、支持的密码套件,还有一个随机数(Client Random),用于后续生成会话密钥。

Handshake Protocol: Client Hello
    Version: TLS 1.2 (0x0303)
    Random: 1cbf803321fd2623408dfe…
    Cipher Suites (17 suites)
        Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f)
        Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030)

服务器收到“Client Hello”后,会返回一个“Server Hello”消息。把版本号对一下,也给出一个随机数(Server Random),然后从客户端的列表里选一个作为本次通信使用的密码套件,在这里它选择了“TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384”。

Handshake Protocol: Server Hello
    Version: TLS 1.2 (0x0303)
    Random: 0e6320f21bae50842e96…
    Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030)

然后,服务器为了证明自己的身份,就把证书也发给了客户端(Server Certificate)。

接下来是一个关键的操作,因为服务器选择了 ECDHE 算法,所以它会在证书后发送“Server Key Exchange”消息,里面是公钥(Server Params),用来实现密钥交换算法,再加上自己的私钥签名认证。

Handshake Protocol: Server Key Exchange
    EC Diffie-Hellman Server Params
        Curve Type: named_curve (0x03)
        Named Curve: x25519 (0x001d)
        Pubkey: 3b39deaf00217894e...
        Signature Algorithm: rsa_pkcs1_sha512 (0x0601)
        Signature: 37141adac38ea4...

之后是“Server Hello Done”消息。

这样第一个消息往返就结束了(两个 TCP 包),结果是客户端和服务器通过明文共享了三个信息:Client RandomServer RandomServer Params

客户端这时也拿到了服务器的证书,这就要开始走证书链逐级验证,确认证书的真实性,再用证书公钥验证签名,就确认了服务器的身份。

然后,客户端按照密码套件的要求,也生成一个公钥(Client Params),用“Client Key Exchange”消息发给服务器。

Handshake Protocol: Client Key Exchange
    EC Diffie-Hellman Client Params
        Pubkey: 8c674d0e08dc27b5eaa…

现在客户端和服务器手里都拿到了密钥交换算法的两个参数(Client ParamsServer Params),就用 ECDHE 算法算出了“Pre-Master”,也是一个随机数。

ECDHE算法可以保证即使黑客截获了之前的参数,也是绝对算不出这个随机数的。

现在客户端和服务器手里有了三个随机数:Client RandomServer RandomPre-Master。用这三个作为原始材料,就可以生成用于加密会话的主密钥,叫“Master Secret”。

而黑客因为拿不到“Pre-Master”,所以也就得不到主密钥。

为了保证真正的“完全随机”“不可预测”,把三个不可靠的随机数混合起来,那么“随机”的程度就非常高了,足够让黑客难以猜测。

“Master Secret”的计算公式:

master_secret = PRF(pre_master_secret, "master secret", ClientHello.random + ServerHello.random)

“PRF”是伪随机数函数,它基于密码套件里的最后一个参数,通过摘要算法来再一次强化“Master Secret”的随机性。

主密钥有 48 字节,但它也不是最终用于通信的会话密钥,还会再用 PRF 扩展出更多的密钥,比如客户端发送用的会话密钥(client_write_key)、服务器发送用的会话密钥(server_write_key)等,避免只用一个密钥带来的安全隐患。

有了主密钥和派生的会话密钥,握手就快结束了。客户端发一个“Change Cipher Spec”,然后再发一个“Finished”消息,把之前所有发送的数据做个摘要,再加密一下,让服务器做个验证。

服务器也是同样的操作,发“Change Cipher Spec”和“Finished”消息,双方都验证加密解密 OK,握手正式结束,后面就收发被加密的 HTTP 请求和响应了。

0.4.4. RSA握手过程

上面的握手是如今主流的 TLS 握手过程,这与传统的握手有两点不同。

  • 第一个,使用 ECDHE 实现密钥交换,而不是 RSA,所以会在服务器端发出“Server Key Exchange”消息。
  • 第二个,因为使用了 ECDHE,客户端可以不用等到服务器发回“Finished”确认握手完毕,立即就发出 HTTP 报文,省去了一个消息往返的时间浪费。这个叫“TLS False Start”和“TCP Fast Open”有点像,都是不等连接完全建立就提前发应用数据,提高传输的效率。

rsa

大体的流程没有变,只是“Pre-Master”不再需要用算法生成,而是客户端直接生成随机数,然后用服务器的公钥加密,通过“Client Key Exchange”消息发给服务器。服务器再用私钥解密,这样双方也实现了共享三个随机数,就可以生成主密钥。

0.4.5. 双向认证

上面过程是“单向认证”握手过程,只认证了服务器的身份,而没有认证客户端的身份。这是因为通常单向认证通过后已经建立了安全通信,用账号、密码等简单的手段就能够确认用户的真实身份。

但为了防止账号、密码被盗,有的时候(比如网上银行)还会使用 U 盾给用户颁发客户端证书,实现“双向认证”,这样会更加安全。

双向认证的流程也没有太多变化,只是在“Server Hello Done”之后,“Client Key Exchange”之前,客户端要发送“Client Certificate”消息,服务器收到后也把证书链走一遍,验证客户端的身份。

0.5. TLS1.3特性

TLS1.3 的三个主要改进目标:兼容、安全与性能。

0.5.1. 最大化兼容性

由于 1.1、1.2 等协议已经出现了很多年,很多应用软件、中间代理(官方称为“MiddleBox”)只认老的记录协议格式,更新改造很困难,甚至是不可行(设备僵化)。

在早期的试验中发现,一旦变更了记录头字段里的版本号,也就是由 0x303(TLS1.2)改为 0x304(TLS1.3)的话,大量的代理服务器、网关都无法正确处理,最终导致 TLS 握手失败。

为了保证这些被广泛部署的“老设备”能够继续使用,避免新协议带来的“冲击”,TLS1.3 不得不做出妥协,保持现有的记录格式不变,通过“伪装”来实现兼容,使得 TLS1.3 看上去“像是”TLS1.2。

区分 1.2 和 1.3 用到一个新的扩展协议(Extension Protocol),通过在记录末尾添加一系列的“扩展字段”来增加新的功能,老版本的 TLS 不认识它可以直接忽略,这就实现了“后向兼容”。

在记录头的 Version 字段被兼容性“固定”的情况下,只要是 TLS1.3 协议,握手的“Hello”消息后面就必须有“supported_versions”扩展,它标记了 TLS 的版本号,使用它就能区分新旧协议。

Handshake Protocol: Client Hello
    Version: TLS 1.2 (0x0303)
    Extension: supported_versions (len=11)
        Supported Version: TLS 1.3 (0x0304)
        Supported Version: TLS 1.2 (0x0303)

TLS1.3 利用扩展实现了许多重要的功能,比如“supported_groups”“key_share”“signature_algorithms”“server_name”等。

0.5.2. 强化安全

TLS1.2 在十来年的应用中获得了许多宝贵的经验,陆续发现了很多的漏洞和加密算法的弱点,所以 TLS1.3 就在协议里修补了这些不安全因素。比如:

  • 伪随机数函数由 PRF 升级为 HKDF(HMAC-based Extract-and-Expand Key Derivation Function);
  • 明确禁止在记录协议里使用压缩;
  • 废除了 RC4、DES 对称加密算法;
  • 废除了 ECB、CBC 等传统分组模式;
  • 废除了 MD5、SHA1、SHA-224 摘要算法;
  • 废除了 RSA、DH 密钥交换算法和许多命名曲线。

TLS1.3 里只保留了:

  • AES、ChaCha20 对称加密算法,
  • 分组模式只能用 AEAD 的 GCM、CCM 和 Poly1305,
  • 摘要算法只能用 SHA256、SHA384,
  • 密钥交换算法只有 ECDHE 和 DHE,
  • 椭圆曲线也被“砍”到只剩 P-256 和 x25519。

现在的 TLS1.3 里只有 5 个套件,无论是客户端还是服务器都不会再犯“选择困难症”了。

suit

废除 RSA 和 DH 密钥交换算法的原因,浏览器默认会使用 ECDHE 而不是 RSA 做密钥交换,这是因为它不具有“前向安全”(Forward Secrecy)。

假设有这么一个很有耐心的黑客,一直在长期收集混合加密系统收发的所有报文。如果加密系统使用服务器证书里的 RSA 做密钥交换,一旦私钥泄露或被破解(使用社会工程学或者巨型计算机),那么黑客就能够使用私钥解密出之前所有报文的“Pre-Master”,再算出会话密钥,破解所有密文。这就是所谓的“今日截获,明日破解”。而 ECDHE 算法在每次握手时都会生成一对临时的公钥和私钥,每次通信的密钥对都是不同的,也就是“一次一密”,即使黑客花大力气破解了这一次的会话密钥,也只是这次通信被攻击,之前的历史消息不会受到影响,仍然是安全的。

所以现在主流的服务器和浏览器在握手阶段都已经不再使用 RSA,改用 ECDHE,而 TLS1.3 在协议里明确废除 RSA 和 DH 则在标准层面保证了“前向安全”。

0.5.3. 提升性能

HTTPS 建立连接时除了要做 TCP 握手,还要做 TLS 握手,在 1.2 中会多花两个消息往返(2-RTT),可能导致几十毫秒甚至上百毫秒的延迟,在移动网络中延迟还会更严重。

现在因为密码套件大幅度简化,也就没有必要再像以前那样走复杂的协商流程了。TLS1.3 压缩了以前的“Hello”协商过程,删除了“Key Exchange”消息,把握手时间减少到了“1-RTT”,效率提高了一倍。

具体的做法还是利用了扩展。

  • 客户端在“Client Hello”消息里直接用“supported_groups”带上支持的曲线,比如 P-256、x25519,用“key_share”带上曲线对应的客户端公钥参数,用“signature_algorithms”带上签名算法。

  • 服务器收到后在这些扩展里选定一个曲线和参数,再用“key_share”扩展返回服务器这边的公钥参数,就实现了双方的密钥交换,后面的流程就和 1.2 基本一样了。

除了标准的“1-RTT”握手,TLS1.3 还引入了“0-RTT”握手,用“pre_shared_key”和“early_data”扩展,在 TCP 连接后立即就建立安全连接发送加密消息,不过这需要有一些前提条件。

0.6. HTTPS优化

HTTPS 连接大致上可以划分为两个部分,

  • 第一个是建立连接时的非对称加密握手,
  • 第二个是握手后的对称加密报文传输。

目前流行的 AES、ChaCha20 性能都很好,还有硬件优化,报文传输的性能损耗小到几乎忽略不计。所以,通常所说的“HTTPS 连接慢”指的就是刚开始建立连接的那段时间。

在 TCP 建连之后,正式数据传输之前,HTTPS 比 HTTP 增加了一个 TLS 握手的步骤,这个步骤最长可以花费两个消息往返,也就是 2-RTT。而且在握手消息的网络耗时之外,还会有其他的一些“隐形”消耗,比如:

  • 产生用于密钥交换的临时公私钥对(ECDHE);
  • 验证证书时访问 CA 获取 CRL 或者 OCSP;
  • 非对称加密解密处理“Pre-Master”。

在最差的情况下,也就是不做任何的优化措施,HTTPS 建立连接可能会比 HTTP 慢上几百毫秒甚至几秒,这其中既有网络耗时,也有计算耗时,就会让人产生“打开一个 HTTPS 网站好慢啊”的感觉。

现在已经有了很多行之有效的 HTTPS 优化手段,运用得好可以把连接的额外耗时降低到几十毫秒甚至是“零”。

把 TLS 握手过程中影响性能的部分都标记了出来,对照着它就可以“有的放矢”地来优化 HTTPS。

optimization

0.6.1. 硬件优化

在计算机世界里的“优化”可以分成“硬件优化”和“软件优化”两种方式。

HTTPS 连接是计算密集型:

  1. 首先,可以选择更快的 CPU,最好还内建 AES 优化,这样即可以加速握手,也可以加速传输。
  2. 其次,可以选择“SSL 加速卡”,加解密时调用它的 API,让专门的硬件来做非对称加解密,分担 CPU 的计算压力。

“SSL 加速卡”有一些缺点,比如升级慢、支持算法有限,不能灵活定制解决方案等。

第三种硬件加速方式:“SSL 加速服务器”,用专门的服务器集群来彻底“卸载”TLS 握手时的加密解密计算,性能自然要比单纯的“加速卡”要强大的多。

0.6.2. 软件优化

硬件优化方式中除了 CPU,其他的方式还要有一些开发适配工作,有一定的实施难度。

比如,“加速服务器”中关键的一点是通信必须是“异步”的,不能阻塞应用服务器,否则加速就没有意义了。所以,软件优化的方式相对来说更可行一些,性价比高。

软件方面的优化还可以再分成两部分:一个是软件升级,一个是协议优化。

软件升级实施起来比较简单,就是把现在正在使用的软件尽量升级到最新版本,比如把 Linux 内核由 2.x 升级到 4.x,把 Nginx 由 1.6 升级到 1.16,把 OpenSSL 由 1.0.1 升级到 1.1.0/1.1.1。

这些软件在更新版本的时候都会做性能优化、修复错误,只要运维能够主动配合,这种软件优化是最容易做的,也是最容易达成优化效果的。

0.6.3. 协议优化

从上面的 TLS 握手图中可以看到影响性能的一些环节,协议优化就要从这些方面着手。

  • 密钥交换过程,如果有可能,应当尽量采用 TLS1.3,它大幅度简化了握手的过程,完全握手只要 1-RTT,而且更加安全。如果暂时不能升级到 1.3,只能用 1.2,那么握手时使用的密钥交换协议应当尽量选用椭圆曲线的 ECDHE 算法。它不仅运算速度快,安全性高,还支持“False Start”,能够把握手的消息往返由 2-RTT 减少到 1-RTT,达到与 TLS1.3 类似的效果。
  • 椭圆曲线也要选择高性能的曲线,最好是 x25519,次优选择是 P-256。
  • 对称加密算法方面,也可以选用“AES_128_GCM”,它能比“AES_256_GCM”略快一点点。

在 Nginx 里可以用“ssl_ciphers”“ssl_ecdh_curve”等指令配置服务器使用的密码套件和椭圆曲线,把优先使用的放在前面,例如:

ssl_ciphers   TLS13-AES-256-GCM-SHA384:TLS13-CHACHA20-POLY1305-SHA256:EECDH+CHACHA20;
ssl_ecdh_curve              X25519:P-256;

0.6.4. 证书优化

握手过程中的证书验证也是一个比较耗时的操作,服务器需要把自己的证书链全发给客户端,然后客户端接收后再逐一验证。这里就有两个优化点:

  • 一个是证书传输,服务器的证书可以选择椭圆曲线(ECDSA)证书而不是 RSA 证书,因为 224 位的 ECC 相当于 2048 位的 RSA,所以椭圆曲线证书的“个头”要比 RSA 小很多,即能够节约带宽也能减少客户端的运算量,可谓“一举两得”。
  • 一个是证书验证。客户端的证书验证其实是个很复杂的操作,除了要公钥解密验证多个证书签名外,因为证书还有可能会被撤销失效,客户端有时还会再去访问 CA,下载 CRL 或者 OCSP 数据,这又会产生 DNS 查询、建立连接、收发数据等一系列网络通信,增加好几个 RTT。

CRL(Certificate revocation list,证书吊销列表)由 CA 定期发布,里面是所有被撤销信任的证书序号,查询这个列表就可以知道证书是否有效。但 CRL 因为是“定期”发布,就有“时间窗口”的安全隐患,而且随着吊销证书的增多,列表会越来越大,一个 CRL 经常会上 MB。

每次需要预先下载几 M 的“无用数据”才能连接网站,实用性实在是太低了。所以,现在 CRL 基本上不用了,取而代之的是 OCSP(在线证书状态协议,Online Certificate Status Protocol),向 CA 发送查询请求,让 CA 返回证书的有效状态。

但 OCSP 也要多出一次网络请求的消耗,而且还依赖于 CA 服务器,如果 CA 服务器很忙,那响应延迟也是等不起的。于是又出来了一个“补丁”,叫“OCSP Stapling”(OCSP 装订),它可以让服务器预先访问 CA 获取 OCSP 响应,然后在握手时随着证书一起发给客户端,免去了客户端连接 CA 服务器查询的时间。

0.6.5. 会话复用

HTTPS 建立连接的过程:先是 TCP 三次握手,然后是 TLS 一次握手。之后一次握手的重点是算出主密钥“Master Secret”,而主密钥每次连接都要重新计算,如果能够把主密钥缓存一下“重用”,不就可以免去了握手和计算的成本了。

这种做法就叫“会话复用”(TLS session resumption),和 HTTP Cache 一样,也是提高 HTTPS 性能的“大杀器”,被浏览器和服务器广泛应用。

会话复用分两种(TLS1.3中删除了):

  • 第一种叫“Session ID”,就是客户端和服务器首次连接后各自保存一个会话的 ID 号,内存里存储主密钥和其他相关的信息。当客户端再次连接时发一个 ID 过来,服务器就在内存里找,找到就直接用主密钥恢复会话状态,跳过证书验证和密钥交换,只用一个消息往返就可以建立安全通信。

0.6.6. 会话票证

“Session ID”是最早出现的会话复用技术,也是应用最广的,但它也有缺点,服务器必须保存每一个客户端的会话数据,对于拥有百万、千万级别用户的网站来说存储量就成了大问题,加重了服务器的负担。

  • 第二种“Session Ticket”方案。它有点类似 HTTP 的 Cookie,存储的责任由服务器转移到了客户端,服务器加密会话信息,用“New Session Ticket”消息发给客户端,让客户端保存。重连的时候,客户端使用扩展“session_ticket”发送“Ticket”而不是“Session ID”,服务器解密后验证有效期,就可以恢复会话,开始加密通信。

“Session Ticket”方案需要使用一个固定的密钥文件(ticket_key)来加密 Ticket,为了防止密钥被破解,保证“前向安全”,密钥文件需要定期轮换,比如设置为一小时或者一天。

0.6.7. 预共享密钥

“False Start”“Session ID”“Session Ticket”等方式只能实现 1-RTT,而 TLS1.3 更进一步实现了“0-RTT”,原理和“Session Ticket”差不多,但在发送 Ticket 的同时会带上应用数据(Early Data),免去了 1.2 里的服务器确认步骤,这种方式叫“Pre-shared Key”,简称为“PSK”。

pre-share-key

但“PSK”也不是完美的,它为了追求效率而牺牲了一点安全性,容易受到“重放攻击”(Replay attack)的威胁。黑客可以截获“PSK”的数据,像复读机那样反复向服务器发送。

解决的办法是只允许安全的 GET/HEAD 方法,在消息里加入时间戳、“nonce”验证,或者“一次性票证”限制重放。

0.7. 迁移HTTPS

0.7.1. 迁移的必要性

  • 移动应用开发中,Apple、Android、微信等开发平台在 2017 年就相继发出通知,要求所有的应用必须使用 HTTPS 连接,禁止不安全的 HTTP。
  • 在台式机上,主流的浏览器 Chrome、Firefox 等也早就开始“强推”HTTPS,把 HTTP 站点打上“不安全”的标签,给用户以“心理压力”。
  • Google 等搜索巨头还利用自身的“话语权”优势,降低 HTTP 站点的排名,而给 HTTPS 更大的权重,力图让网民只访问到 HTTPS 网站。

这些手段都逐渐“挤压”了纯明文 HTTP 的生存空间,HTTPS 的大潮无法阻挡,目前国内外的许多知名大站都已经实现了“全站 HTTPS”。

0.7.2. 迁移的顾虑

阻碍 HTTPS 实施的因素有三个比较流行的观点:“慢、贵、难”。

  • 所谓“慢”,是指惯性思维,认为 HTTPS 会增加服务器的成本,增加客户端的时延,影响用户体验。现在服务器和客户端的运算能力都已经有了很大的提升,性能方面完全没有担心的必要,而且还可以应用很多的优化解决方案。

根据 Google 等公司的评估,在经过适当优化之后,HTTPS 的额外 CPU 成本小于 1%,额外的网络成本小于 2%,可以说是与无加密的 HTTP 相差无几。

  • 所谓“贵”,这也属于惯性思维,在早几年的确是个问题,向 CA 申请证书的过程不仅麻烦,而且价格昂贵,每年要交几千甚至几万元。但现在就不一样了,为了推广 HTTPS,很多云服务厂商都提供了一键申请、价格低廉的证书,而且还出现了专门颁发免费证书的 CA,其中最著名的就是“Let’s Encrypt”。
  • 所谓的“难”,是指 HTTPS 涉及的知识点太多、太复杂,有一定的技术门槛,不能很快上手。HTTPS 背后关联到了密码学、TLS、PKI 等许多领域,但实施 HTTPS 也并不需要把这些完全掌握。

0.7.3. 申请证书

要把网站从 HTTP 切换到 HTTPS,首先要做的就是为网站申请一张证书。

大型网站出于信誉、公司形象的考虑,通常会选择向传统的 CA 申请证书,例如 DigiCert、GlobalSign,而中小型网站完全可以选择使用“Let’s Encrypt”这样的免费证书,效果也完全不输于那些收费的证书。

“Let’s Encrypt”一直在推动证书的自动化部署,为此还实现了专门的 ACME 协议(RFC8555)。有很多的客户端软件可以完成申请、验证、下载、更新的“一条龙”操作,比如 Certbotacme.sh 等等,都可以在“Let’s Encrypt”网站上找到,用法很简单,相关的文档也很详细,几分钟就能完成申请。

注意事项。

  • 第一,申请证书时应当同时申请 RSA 和 ECDSA 两种证书,在 Nginx 里配置成双证书验证,这样服务器可以自动选择快速的椭圆曲线证书,同时也兼容只支持 RSA 的客户端。
  • 第二,如果申请 RSA 证书,私钥至少要 2048 位,摘要算法应该选用 SHA-2,例如 SHA256、SHA384 等。
  • 第三,出于安全的考虑,“Let’s Encrypt”证书的有效期很短,只有 90 天,时间一到就会过期失效,所以必须要定期更新。

可以在 crontab 里加个每周或每月任务,发送更新请求,不过很多 ACME 客户端会自动添加这样的定期任务,完全不用你操心。

0.7.4. 配置HTTPS

配置 Web 服务器,在 443 端口上开启 HTTPS 服务了。

这在 Nginx 上非常简单,只要在“listen”指令后面加上参数“ssl”,再配上刚才的证书文件就可以实现最基本的 HTTPS。

为了提高 HTTPS 的安全系数和性能,你还可以强制 Nginx 只支持 TLS1.2 以上的协议,打开“Session Ticket”会话复用。

密码套件的选择方面,我给你的建议是以服务器的套件优先。这样可以避免恶意客户端故意选择较弱的套件、降低安全等级,然后密码套件向 TLS1.3“看齐”,只使用 ECDHE、AES 和 ChaCha20,支持“False Start”。

如果客户端硬件没有 AES 优化,服务器就会顺着客户端的意思,优先选择与 AES“等价”的 ChaCha20 算法,让客户端能够快一点。

0.7.5. 服务器名称指示

配置 HTTPS 服务时还有一个“虚拟主机”的问题需要解决。

  • 在 HTTP 协议里,多个域名可以同时在一个 IP 地址上运行,这就是“虚拟主机”,Web 服务器会使用请求头里的 Host 字段来选择。
  • 但在 HTTPS 里,因为请求头只有在 TLS 握手之后才能发送,在握手时就必须选择“虚拟主机”对应的证书,TLS 无法得知域名的信息,就只能用 IP 地址来区分。

最早的时候每个 HTTPS 域名必须使用独立的 IP 地址,非常不方便。用 TLS 的“扩展”,给协议加个 SNI(Server Name Indication)的“补充条款”。它的作用和 Host 字段差不多,客户端会在“Client Hello”时带上域名信息,这样服务器就可以根据名字而不是 IP 地址来选择证书。

SNI使用明文表示域名,也就是提前暴露了一部分HTTPS的信息,有安全隐患,容易被“中间人”发起拒绝攻击,被认为是TLS盔甲上的最后一个缝隙,目前正在起草ESNI规范。

Nginx 很早就基于 SNI 特性支持了 HTTPS 的虚拟主机,但在 OpenResty 里可还以编写 Lua 脚本,利用 Redis、MySQL 等数据库更灵活快速地加载证书。

0.7.6. 重定向跳转

有了 HTTPS 服务,原来的 HTTP 站点也不能马上弃用,很多用户习惯在地址栏里直接敲域名(或者是旧的书签、超链接),默认使用 HTTP 协议访问。

所以,需要用“重定向跳转”技术,把不安全的 HTTP 网址用 301 或 302“重定向”到新的 HTTPS 网站,这在 Nginx 里也很容易做到,使用“return”或“rewrite”都可以。但这种方式有两个问题。

  • 一个是重定向增加了网络成本,多出了一次请求;
  • 另一个是存在安全隐患,重定向的响应可能会被“中间人”窜改,实现“会话劫持”,跳转到恶意网站。

“HSTS”(HTTP 严格传输安全,HTTP Strict Transport Security)的技术可以消除重定向的安全隐患。HTTPS 服务器需要在发出的响应头里添加一个“Strict-Transport-Security”的字段,再设定一个有效期,例如:

Strict-Transport-Security: max-age=15768000; includeSubDomains

这相当于告诉浏览器:我这个网站必须严格使用 HTTPS 协议,在半年之内(182.5 天)都不允许用 HTTP,你以后就自己做转换吧,不要再来麻烦我了。

有了“HSTS”的指示,以后浏览器再访问同样的域名的时候就会自动把 URI 里的“http”改成“https”,直接访问安全的 HTTPS 网站。这样“中间人”就失去了攻击的机会,而且对于客户端来说也免去了一次跳转,加快了连接速度。

“HSTS”无法防止黑客对第一次访问的攻击,所有Chrome等楼兰器还内置了一个“HSTS preload”的列表(chrome://net-internals/#hsts),只要域名在这个列表里,无论何时都会强制使用HTTPS访问。

上次修改: 14 April 2020